
Creation of a middleware for blockchain
interaction based on NestJS

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Marc Cosgaya Capel

In partial fulfilment
of the requirements for the master in

Cybersecurity

Advisors: Jose Luis Muñoz Tapia
Rafael Genés Durán

Barcelona, July 2023

Contents

List of Figures 4

List of Tables 4

1 Introduction 7
1.1 Project development planning . 8

2 Background 10
2.1 Blockchain . 10

2.1.1 Proof of Work . 10
2.1.2 Proof of Stake . 10

2.2 Ethereum . 11
2.3 Ethers . 11
2.4 Nest . 11

2.4.1 Architecture . 12
2.4.2 More information . 13

2.5 React . 13

3 Methodology 15
3.1 Development . 15
3.2 Documentation . 16

4 Evaluation 17
4.1 Endpoints . 19

4.1.1 Transactions . 19
4.1.2 Contracts . 19

4.2 Frontend . 20
4.2.1 Send . 20
4.2.2 Contract . 21

5 Budget 22
5.1 Development . 22
5.2 Maintenance . 22

6 Conclusions and future development 23
6.1 Future work . 23

6.1.1 Security . 23
6.1.2 Deployment . 24
6.1.3 Compilation . 24
6.1.4 Budget . 25

References 26

7 Appendices 29
7.1 Prisma schema file of the database . 29

2

7.2 Definition, in YAML format, of the API following the OpenAPI specification. 29

3

List of Figures

1 Project’s Gantt diagram . 9
2 Architecture of a Nest application. 12
4 Swagger fragment of transaction API. 17
5 Swagger fragment of smart contract API. 17
6 ER diagram of the database. 18
7 Derivation of BIP32 HD wallets. Source: BIPS[29]. 18
8 Send page. 20
9 Send page after having sent 3 ETH. 20
10 Contract page with a simple storage available. 21
11 A store call has been made with value ’33’. 21

List of Tables

1 Study Nest task. 8
2 Develop middleware task. 8
3 Study React task. 8
4 Develop use cases task. 8
5 Documentation task. 9
6 Estimated budget for the development. 22
7 Estimated budget for the maintenance. 22

4

Revision history and approval record

Revision Date Purpose
0 21/05/2023 Document creation
1 14/06/2023 Document revision
2 26/06/2023 Document revision
3 28/06/2023 Document revision
4 01/07/2023 Document delivery

DOCUMENT DISTRIBUTION LIST

Name e-mail
Marc Cosgaya Capel marc cosgaya@protonmail.com
Jose Luis Muñoz Tapia jose.luis.munoz@upc.edu
Rafael Genés Durán rafael.genes@upc.edu

Written by: Reviewed and approved by:
Date 28/06/2023 Date 01/07/2023
Name Marc Cosgaya Capel Name Jose Luis Muñoz Tapia
Position Project Author Position Project Supervisor

5

Abstract

Accessing and operating with a blockchain node is paramount when interacting with
smart contracts. Several API providers already exist, but this approach includes an extra
dependency in development. Moreover, these tools require an already provided JSON-
RPC node, instead of a locally-managed one. Hence, the scope of this work is to develop
a middleware, which provides an API, to interact with a local node using HTTP calls.

In particular, the work focuses on an Ethereum middleware and, in turn, on smart con-
tracts programmed using Solidity. The main technology that allows building the middle-
ware is Nest, a backend framework built on top of Express. And to interact with the
blockchain, it uses the Ethers library.

Keywords: Ethereum, Solidity, Nest, Ethers.

6

1 Introduction

Since Ethereum’s inception in 2013, blockchains based on smart contracts have been
widely used in decentralized applications, or dApps, in what is called the Web3 paradigm.
This paradigm incorporates decentralization into the World Wide Web. Its main advan-
tages are privacy, security and scalability.

Due to the decentralization of blockchain networks, they are comprised of nodes that
interact with each other using a consensus algorithm. Outside actors, or regular users, of
the blockchain may want to interact with the blockchain, either to send coins or to use a
smart contract. The interaction is achieved through a JSON-RPC API provided by the
nodes.

Cryptocurrency wallets, or clients, need to use the API to perform the transactions. But
other applications may want to connect to the node using a higher level of abstraction.
For example, using an API library. In the case of Ethereum, there are a wide array of
libraries[1].

However, even though there are several API providers, like Infura[2], that usually require
using a remote node instead of a locally-managed one. This approach breaks with the goal
of decentralization. Moreover, a developer may not want to rely on an external service
since it’s another dependency.

For this reason, this work focuses on developing a Nest-based middleware/backend, with
a local node, which provides an API library. Nest is a backend framework built on top
of Express, but it may support other frameworks. Nest, which was inspired by Angular,
has a high degree of modularity, which makes it rather flexible. The JSON-RPC wrapper
used to interact with the Ethereum blockchain is Ethers.

Furthermore, this work also includes some use cases implemented in React, a powerful
framework for building reactive frontends in single page applications.

7

1.1 Project development planning

The project is split into four tasks. The first two are related to developing the backend
with Nest and Ethers, and the second two to making the React frontend for each use case.
Tables 5, 2, 3 and 4.

Study Nest
Description Start event: 08/02/2023
Since Nest is a rather new framework, some study of
its main functionalities is required. The sources are the
official documentation and a Udemy course on the topic
by Stephen Grider[3].

End event: 14/03/2023

Table 1: Study Nest task.

Develop middleware
Description Start event: 14/03/2023
The main development of the middleware with Nest and
Ethers. This is the main bulk of work of the thesis. Reg-
ular meetings with the advisors are required to monitor
the development and to consider new functionalities.

End event: 21/04/2023

Table 2: Develop middleware task.

Study React
Description Start event: 21/04/2023
A reminder of key React concepts with the help of the
React video series from Postgraduate course in Full-
Stack Web Technologies[4].

End event: 13/05/2023

Table 3: Study React task.

Develop use cases
Description Start event: 13/05/2023
Development of simple use cases that use the aformen-
tioned API.

End event: 17/06/2023

Table 4: Develop use cases task.

8

Documentation
Description Start event: 14/03/2023
Writing this work’s Thesis. In addition, since this work
has been done in conjunction with an internship at Ese-
leos SL[5], the task also includes writing extensive doc-
umentation of Nest for employee training.

End event: 30/06/2023

Table 5: Documentation task.

The tasks span 5 months, from February to June. The Gantt diagram of the tasks is
shown in figure 1.

Now

Phases of the Project
2023

February March April May June
Nest

100% completeStudy Nest
100% completeDevelop middleware

React

100% completeStudy React
100% completeDevelop use cases

Documentation

100% completeMake Nest slides
100% completeWrite thesis

Figure 1: Project’s Gantt diagram

9

2 Background

2.1 Blockchain

A blockchain is a distributed, immutable chain of blocks of data, where each block points
to the previous one. Immutability is achieved through the hash values of the previous
block, which is referenced in the current one. The main advantage of immutability is data
integrity.

The first widespread use of this technology is in the Bitcoin protocol. In Bitcoin, the
blockchain provides the basis for a distributed ledger of the transactions between actors.
Each block contains a list of transactions signed by the owners of the coins.

Adding a new block into the blockchain is achieved with a consensus algorithm between
the nodes of the network. Proof of Work and Proof of Stake are the most commonly used.
In both cases, a node is chosen to add the new block. The chosen node is rewarded in
cryptocurrency.

2.1.1 Proof of Work

In Proof of Work (PoW), each node needs to be the first to solve a problem in order to
be chosen. The problem can be loosely defined as follows:

• Let input x be a sequence of bytes representing the new block.

• Let difficulty d be an integer.

• Let n be an arbitrary nonce.

• Let h be a hash function, like SHA-256, which takes a sequence of bytes and outputs
a sequence of bytes or digest.

• Let z be a function that returns the number of leading zeros of a sequence of bytes.

• Compute y = h(x||n).

• If d == z(y), success. Otherwise, repeat with a new n.

The hash is defined at the protocol level. The difficulty changes depending on the ne-
cessity of the network in order to have the frequency of new blocks be constant. Nodes
participating in this algorithm are called miners.

Proof of Work is used in UTXO-based blockchains, in which each coin has its own public
address. In other words, the coins are not fungible. Miners are incentivized to behave
honestly by the cost of acquiring and running the hardware for mining.

2.1.2 Proof of Stake

Proof of Stake (PoS) requires ”locking” a balance as collateral. There is a minimum
amount of coins to be able to lock. Once the coins are locked, they cannot be used. This

10

is achieved using a smart contract. The locked amount equals to a probability of being
chosen. Nodes participating in this algorithm are called validators.

PoS is used in balance-based blockchains, in which each account has assigned a value of
coins. This is due to the smart contract requirement. In this case, the coins are fungi-
ble. Validators are incentivized to behave honestly by the collateral locked in the smart
contract.

2.2 Ethereum

The Ethereum blockchain was created in 2013. Since its inception, it has become the go-to
blockchain for deploying smart contracts. In 2022, Ethereum switched from a PoW to a
PoS consensus algorithm[6]. Contrary to PoW, which requires a lot of computing power,
PoS is much more energy efficient.

Ethereum provides the Ethereum Virtual Machine The EVM is a stack-based state-
machine, an abstraction of the execution of a program in the nodes of the blockchain
network[7]. Smart contracts are programmed in languages like Solidity and then compiled
into EVM instructions. Once deployed, the instructions are stored as bytecode in a block.
The instructions are executed by a node if the payment of a fee is provided in the native
Ethereum cryptocurrency.

Smart contracts have been widely used in decentralized applications, or dApps, in what
is called the Web3 paradigm. This paradigm incorporates decentralization into the World
Wide Web. Its main advantages are privacy, security and scalability.

2.3 Ethers

Ethers is a TypeScript-based Node.js module that allows an application to interact with
Ethereum nodes[8]. This enables a connection to a node with using a higher level of
abstraction in what is called an API library.

In Ethereum, clients need to contact nodes using a JSON-RPC API. An API library is
a wrapper of the JSON-RPC client functionalities. More abstraction helps in detaching
the logic of the application from the blockchain. API libraries outsource the validation
and security checks. This reduces the development overhead of the Security by Design
methodology. Now, a developer does not need to take into account how the JSON-RPC
API is defined, and only focus on the main implementation of the application.

2.4 Nest

NestJS, or simply Nest, is an open-source, extensible, versatile, progressive Node.js frame-
work for building efficient, scalable Node.js server-side applications (backend).

11

It is built with and fully supports TypeScript (yet still enables developers to code in
pure JavaScript) and combines elements of OOP (Object Oriented Programming), FP
(Functional Programming), and FRP (Functional Reactive Programming).

Its main features are:

• Easy to use, learn and master.

• Powerful Command Line Interface (CLI) to boost productivity and ease of develop-
ment.

• Detailed and well-maintained documentation.

• Active codebase development and maintenance.

• Support for dozens of nest-specific modules to integrate with common technologies
and concepts like TypeORM, Mongoose, GraphQL, Logging, Validation, Caching,
WebSockets and much more.

• Easy unit-testing applications.

• On top of NestJS you can easily build Rest API’s, MVC applications, microservices,
GraphQL applications, Web Sockets or CLI’s and CRON jobs.

2.4.1 Architecture

Roughly, a Nest application will take requests, process it in some way and return a re-
sponse.

Figure 2: Architecture of a Nest application.

The requests handling logic is divided into modular blocks. Each type of block is intended
for a specific purpose. Nest has tools to help writing this blocks in a fast and efficient way.
Several building blocks are packed in one module.

Nest, out of the box, provides the following list of building blocks types:

12

• Pipes: Validates data contained in the requests.

• Guards: Handles authentication strategies.

• Controllers: Handles incoming requests by routing it to a particular function.

• Services: Handles business logic execution or access data through a repository.

• Repositories: Handles data stored in a DB (stores or retrieves data).

• Interceptors: Adds extra logic to incoming requests or outgoing responses.

• Filters: Handles errors that may occur during request handling.

• Modules: Groups together different building blocks

Nest modularity allows developing reusable logical parts that can be used across different
types of applications. Nest provides an out-of-the-box application architecture which al-
lows developers and teams to create highly testable, scalable, loosely coupled, and easily
maintainable applications.

2.4.2 More information

This work has been done in conjunction with an internship at Eseleos. For this reason,
extensive documentation on how Nest works had to be made for employee training. The
slides are submitted as a separate file.

2.5 React

React is a framework for developing Single-Page Applications (SPAs). It is open source
and being developed by Meta. React uses inversion of control to allow developers to
program components while the framework deals with the changes. It is reactive in nature.

Reactive programming is a declarative paradigm. The developer specifies how a page
should be, and the framework is tasked with updating the DOM with the changes. To
do this, React has a virtual DOM, mirroring the actual HTML DOM tree. Whenever a
change occurs, the framework compares the virtual DOM with the real one in an HTML
page, and does the necessary changes.

Components return a JSX expression, which is a JavaScript equivalent of an HTML
fragment. It is possible to work with TypeScript in TSX[9]. Components can be nested
and can have properties, much like HTML elements do. They can be either classes or
functions. However, lately the latter approach is more commonly used.

React also introduced the concept of hooks[10], which lets components access different
React features. The following are the most relevant:

13

• useState lets components have a state. States in React are internal attributes that,
unlike regular props, can change dynamically. This enables a page to update its
appearance in relation to events like clicking on a button or inputting text.

• useEffect lets components tap into side effects tied to the updating of the value of
an attribute. This is useful if a component relies on an external input of the React
page, like an API call to a server or to the browser.

• useRef lets components hold the reference to a DOM object. This can be used to
access a specific part of the HTML manually. However, this should be avoided as it
can result in unexpected behaviour.

14

3 Methodology

This section describes the methodology of the development of the middleware/backend
using Nest and the frontend using React.

3.1 Development

Development is done using VSCodium[11], an open-source and telemetry-free alternative
to Microsoft’s VSCode, which is a modular IDE with a wide range of extensions. The ones
that are used are:

• REST Client allows for defining HTTP calls to the endpoints of the middleware[12].

• SQLite provides tools for visualizing and interacting with an SQLite database[13].

The smart contracts have been coded using the Remix IDE[14]. This environment, devel-
oped by the Ethereum team, allows for compiling Solidity code and deploying it through
a JSON-RPC node.

To test the backend, Ganache is used to simulate an Ethereum blockchain[15]. Ganache
generates a mnemonic seed, easier to remember than a private key, and a set of 10 private
keys for testing. It also provides a local node with a JSON-RPC API. Moreover, Ganache
can either mine blocks instantaneously or have a fixed delay.

(a) VSCodium (b) Remix (c) Ganache

The backend is developed using Nest v9 (July 2022)[16], while Prisma v4 (June 2022) was
chosen as the ORM for this project[17][18]. Prisma provides a virtual relation field for
working with foreign keys. It also provides a type-safe model in a specific schema format.
For development purposes, the used DBMS is SQLite v3 (September 2004)[19].

A little clarification on previous concepts:

• ORM means Object-Relational Mapping. It is a tool for mapping an entry/model
in a database with an object in the application. It makes it easier to interact with
the DB.

• DBMSmeans DataBase Management System. It is a piece of software that manages
the data of the databases. Examples of DBMS are SQLite, MySQL, Oracle and
MongoDB.

The frontend is developed using React v18 (March 2022) together with Axios v1 (October
2022)[20][21]. The latter is a lightweight package for making HTTP calls that can be used
both in a browser and in Node.js.

15

Git is employed as the version management system, in conjunction with GitHub. The
resulting repositories are:

• Ethereum-NestJS-Middleware for the backend[22].

• Ethereum-NestJS-Frontend for the frontend[23].

3.2 Documentation

Notion was used during the study of Nest and its functionalities[24]. The website, which
is a great tool for taking notes, is designed for making documentation and wikis.

This thesis has been written using LATEX. The Nest slides are also made in this way.
Diagram 2 is made with draw.io/diagrams.net[25]. Figure 6 is made with a Prism ERD
tool[26].

In the next section, the resulting application will be analysed.

16

4 Evaluation

The middleware has been split into two modules: transactions and contracts.

• transactions focuses on the transaction logic and balances. See diagram 4 for a full
list of endpoints.

• contracts focuses on deploying and verifying smart contracts. More importantly, it
manages the calls to contract methods. See diagram 5 for a full list of endpoints.

Figure 4: Swagger fragment of transaction API.

Figure 5: Swagger fragment of smart contract API.

For a detailed definition of the API following the OpenAPI specification, in YAML format,
see annex 7.2[27].

The database is used as a ”caching” mechanism. It allows for accessing blockchain infor-
mation without having to connect to an actual node. This approach is a good solution to
a slow or unreliable network. There are also endpoints for manually adding transactions
and contracts that have already been deployed on the blockchain. The object-relational
diagram is shown in figure 6. Notice that the tables are decoupled. Annex 7.1 shows the
Prisma schema of the database.

The backend supports two modes of using private keys: internal and provided. In the
internal mode, it uses a key specified in the PKEY environment variable. In the provided
mode, on the other hand, the private key is given as part of the body in a mnemonic
property. The property needs to follow the BIP32 standard[28]. This property contains:

17

Figure 6: ER diagram of the database.

• mnemonic: A 12-word string of the mnemonic.

• password: An optional string for the password used to protect the mnemonic.

• path: An optional string of the hierarchical deterministic wallet. The structure fol-
lows diagram 7.

Figure 7: Derivation of BIP32 HD wallets. Source: BIPS[29].

18

4.1 Endpoints

The following sections delve deeper into relevant aspects of the endpoints.

4.1.1 Transactions

First, in the transactions module, there is the possibility of signing a transaction without
sending it, through a POST call to /api/transactions/sign. This can be used for generating
the transactions locally and sending them once the network is reliable.

The same POST call to /api/transactions can be used for sending an already signed
transaction. The request body of that endpoint can have either a new or raw property
containing the transaction. The latter is used for this purpose.

Secondly, Ethers makes a distinction between the type of data returned by some functions.

• TransactionResponse refers to any type of transaction. It can be either mined
or not. JsonRpcProvider.getTransaction(), JsonRpcProvider.broadcastTransaction()
and BaseWallet.sendTransaction() are functions that return it. Making calls to a
smart contract, as well.

• TransactionReceipt refers to mined transactions. In other words, transactions
that have been added into a block. JsonRpcProvider.getTransactionReceipt() returns
this.

There is a PATCH call to /api/transactions to update the information of a mined trans-
action. In order to do this, the client needs to send the hash of the transaction. This call
gives the possibility of saving/caching remote transactions in the database.

4.1.2 Contracts

For the smart contracts module, it was decided that an option to verify the source code
could be an added plus to the application. At first, third-party options like Etherscan were
considered[30]. This blockchain explorer has a built-in code verifier accessible through an
API. However, there is a maximum of 5 calls per second on the free subscription. To
prevent further expenses with paid subscriptions and to avoid another dependency, it was
decided that verification would be done locally.

To do this, the middleware employs the solc package, which is actually developed by the
Ethereum team[31]. The package enables the compilation of Solidity code in Node.js. It
also allows for runtime downloading of compiler versions, which makes it rather versatile.

Contracts POSTed to /api/contracts can be directly verified or not. If it is the latter case,
verification is done through a PATCH call to /api/contracts. Internally, the middleware
takes the source code, compiler version and file name to compile the Solidity code into
bytecode. It then checks if the bytecodes match to verify the code.

It is important to note that contracts do not require being verified for making calls to
them. But the verified attribute allows for the auditing of the smart contract.

19

Similarly to the transactions module, the PATCH call allows for loading the data related
to a remotely-deployed contract.

4.2 Frontend

Two use cases have been developed for the frontend. They match each of the two modules
in the middleware.

4.2.1 Send

The first uses the transactions module to send Ethereum to a recipient. It works in the
provided mode.

Figure 8: Send page.

It is divided into two sections, one for checking an account’s balance and the other for
sending the coins. The latter is more relevant. The mnemonic and HD path need to
be chosen as required by the provided mode. And finally there are the inputs for the
recipient and amount, in ETH. Details about the generated transaction are shown in the
table below.

Figure 9: Send page after having sent 3 ETH.

20

4.2.2 Contract

The second uses the contracts module to make calls to a smart contract. It works in the
internal mode. It contains three sections.

Figure 10: Contract page with a simple storage available.

First, a list of available smart contracts show up. The table shows the address of the
smart contract and the transaction that deployed it. It also tells if the source code has
been verified.

Second, once a contract is selected, more relevant information will appear. Information
like the ABI, bytecode and source code. The ABI section contains a drop-down menu with
each call and their properties. For example, the inputs, outputs or whether it’s payable
or not.

Figure 11: A store call has been made with value ’33’.

Third, the last section shows a selector for the smart contract call. If the call accepts one
or more inputs, one or more text inputs appear in order to be filled. Once a transaction-
generating call is made, the same transaction information table from the other use case
shows up. If the call does not generate a transaction, only the returned value is shown.

21

5 Budget

This section presents the estimated budget needed in order to develop and maintain the
middleware.

5.1 Development

The development budget takes into account the price of the laptop in which the application
was developed. In this case, it has been an Acer Predator 300PT315-53. It also takes into
account an ECTS of 25h/credit. So the total amount of hours is 25 ∗ 12 = 300.

Concept Hours €/h Cost (€)
Developer 300 25 7500

Acer Laptop 910
Total (€) 8410

Table 6: Estimated budget for the development.

5.2 Maintenance

The maintenance budget takes into the account the wages of a fullstack developer working
half-time. The amount of hours is, approximately, 86.67 (21.67 days/month in average).
For running the middleware and frontend, the budget also takes into account a VPS with
8GB of RAM and 4 CPU cores, for example[32][33][34]. This is about 45€/month.

Concept Hours €/h Cost (€)
Developer 86.67 25 2166.67

VPS 45
Total (€/month) 2211.67

Table 7: Estimated budget for the maintenance.

22

6 Conclusions and future development

To start off, working in TypeScript taught me that it helps in avoiding bugs coming from
wrong variable types. Coupling this with VSCodium’s linting make it very unlikely to
have type-related errors.

In addition, I found out that Ethers has extensive documentation and is straightforward
to use. It is important to note that the package’s functionalities used in this work are a
small portion of all that it can do.

Moreover, I learned that proper testing needs to be done to avoid errors. So using tools
like Ganache or the REST client extension helped in this regard.

Finally, I discovered that Solidity is a simple and easy to understand smart contract
language. And that Remix errors help a lot in understanding how the language works.
Because of this, it might seem that it is more restrictive. In this regard, Solidity is like C
or C++.

All in all, the development of this work taught me that smart contracts provide a flex-
ible dApp framework. And also that blockchain is a promising technology. Working in
a controlled environment, with extensive documentation at my disposal, was key in the
development of a secure and bug-free application.

6.1 Future work

Despite this, there are several improvements that have not been made due to time con-
straints. They will be explained in this section.

6.1.1 Security

The first and most important improvement would be to use certificates to ensure a se-
cure channel. Using TLS would ensure that no information regarding the private key is
leaked. In principle, a replay attack should not be possible due to the nature of Ethereum
transactions using a nonce. A man-in-the-middle attack should also not be possible due
to transactions being digitally signed.

The second improvement would be to do a lot of testing of the overall application in what
is called E2E (end-to-end) testing. This is a must in order to prevent unexpected behaviour
from the client’s point of view. Luckily, Nest uses the Jest library, which provides a simple
testing framework[35].

Another security improvement would be to enable Cross-Origin Resource Sharing, or
CORS. This would make the middleware be available only from authorized domains. In
other words, forcing the use of the application through specific web pages, which may add
additional input validation. Because of this, it would be harder to exploit the API from
an HTTP client. However, this would prevent the middleware from providing an open
API.

Moreover, even though private keys can be manually provided by the mnemonic property,
it would make more sense to store the keys in the database. This solution would require

23

some considerations. The first, that proper access control policies would need to be imple-
mented. The second, that keys should be securely stored in the database, preferably salted
and peppered. Third, that it would add a considerable storage overhead. And fourth, that
it would require storing the keys in a relatively centralized way, deviating from the goal
of dApps.

6.1.2 Deployment

For the testing environment, using a testnet would provide a more realistic scenario for
testing. Testnets like Sepolia or Goerli are recommended by Ethereum[36]. Even though
this is mitigated by using a fixed delay between blocks, it may not be enough to satisfy
all possible scenarios. For example, a scenario in which the network is split, with more
than one consensus, has not been tested yet.

For a production environment, it would make sense to dockerise the middleware. This
would greatly speed up the setup and replication of the software, as well as make it
more scalable. We could even set up a load balancer for handling large volumes of re-
quests. Or, alternatively, deploy it on cloud providers like Microsoft Azure or Amazon
Web Services[37][38].

Even though SQLite was used for development, it is not intended to be the final DBMS
used. Prisma offers a list of database connectors compatible with its client[39]. The most
relevant to the requirements of this work is CockroachDB, which is a SQL-based dis-
tributed DBMS centred around scalability and survivability[40]. Coupling this with the
previously mentioned cloud deployment would ensure the resiliency of the middleware.

Furthermore, detaching the database would be another improvement. Doing so would
require following a microservice architecture, which is easier to manage. This allows for
swapping and scaling specific components, such as the DBMS, of the overall application
with relative ease.

6.1.3 Compilation

The next improvements involve the smart contract compiler.

First, a new module could be considered for only compiling smart contracts, without
interacting with the blockchain. This would cut off another dependency in development.
This would be especially effective if the frontend provided a compiling interface.

Second, having solc download major compiler versions on startup would greatly reduce
the response time of some requests. Even though the library caches the compilers, clients
still need to wait for the compiler to download if it is a non-cached version.

And third, adding support for other smart contract languages could make the application
more flexible for developers. Languages like Vyper, which resembles Python, or Yul, which
is more low-level, should be considered[41].

Another improvement would be to switch from Ganache to Hardhat[42]. This Node.js
framework speeds up smart contract development by providing compilation and testing

24

tools. A new contract dev module could be made to use Hardhat via HTTP requests to
avoid programming errors and help in debugging Solidity code.

6.1.4 Budget

Transactions may sometimes require a high gas fee. The solution to this would be to allow
metatransactions[43]. They allow a client to sign a transaction without having to pay the
fee. This is achieved with a smart contract that relays the transaction. The actual fee is
then paid by the middleware.

In this work’s case, a fee policy should be implemented depending on the use case. An
example could be a fee paid at the end of the month in euros for a limited amount of calls
to transaction-generating endpoints. The due amount should take into account the cost
of maintaining the middleware.

Note that there is already a pseudo-metatransaction mechanism. This is implemented
with a private key, provided by the middleware in the internal mode.

25

References

[1] Ethereum. Backend API libraries. https://ethereum.org/en/developers/docs/

apis/backend. (accessed: 21.05.2023).

[2] Infura. BUILD SCALE DISRUPT. https://www.infura.io/. (accessed:
22.06.2023).

[3] Stephen Grider. NestJS: The Complete Developer’s Guide. https://www.udemy.

com/course/nestjs-the-complete-developers-guide. (accessed: 22.05.2023).

[4] Pablo Fernández Duran & Jose L. Muñoz Tapia. Postgraduate course in Full-Stack
Web Technologies. https://www.talent.upc.edu/ing/estudis/formacio/curs/

313400/posgrado-full-stack-web-technologies. (accessed: 24.05.2023).

[5] ESELEOS. https://www.eseleos.com/. (accessed: 14.06.2023).

[6] Bhaskar Kashyap & other contributors. PROOF-OF-STAKE (POS). https:

//ethereum.org/en/developers/docs/consensus-mechanisms/pos. (accessed:
01.06.2023).

[7] Joshua & other contributors. ETHEREUM VIRTUAL MACHINE (EVM). https:
//ethereum.org/en/developers/docs/evm. (accessed: 01.06.2023).

[8] Richard Moore. The Ethers Project. https://www.npmjs.com/package/ethers.
(accessed: 01.06.2023).

[9] Create React App. Adding TypeScript. https://create-react-app.dev/docs/

adding-typescript. (accessed: 10.06.2023).

[10] React. Built-in React Hooks. https://react.dev/reference/react. (accessed:
10.06.2023).

[11] Peter Squicciarini & other contributors Baptiste Augrain. VSCodium - Open Source
Binaries of VSCode. https://vscodium.com. (accessed: 05.06.2023).

[12] Huachao Mao. REST Client. https://open-vsx.org/extension/humao/

rest-client. (accessed: 10.06.2023).

[13] Alex Covizzi. SQLite. https://open-vsx.org/extension/alexcvzz/

vscode-sqlite. (accessed: 10.06.2023).

[14] Ethereum. Remix - Ethereum IDE. https://remix.ethereum.org/. (accessed:
21.06.2023).

[15] Truffle. Ganache - Truffle Suite. https://trufflesuite.com/ganache. (accessed:
05.06.2023).

[16] Kamil Mysliwiec. NestJS v9 is now available! https://trilon.io/blog/

nestjs-9-is-now-available. (accessed: 18.06.2023).

[17] Prisma Team. Next-generation Node.js and TypeScript ORM. https://www.

prisma.io. (accessed: 05.06.2023).

26

https://ethereum.org/en/developers/docs/apis/backend
https://ethereum.org/en/developers/docs/apis/backend
https://www.infura.io/
https://www.udemy.com/course/nestjs-the-complete-developers-guide
https://www.udemy.com/course/nestjs-the-complete-developers-guide
https://www.talent.upc.edu/ing/estudis/formacio/curs/313400/posgrado-full-stack-web-technologies
https://www.talent.upc.edu/ing/estudis/formacio/curs/313400/posgrado-full-stack-web-technologies
https://www.eseleos.com/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos
https://ethereum.org/en/developers/docs/evm
https://ethereum.org/en/developers/docs/evm
https://www.npmjs.com/package/ethers
https://create-react-app.dev/docs/adding-typescript
https://create-react-app.dev/docs/adding-typescript
https://react.dev/reference/react
https://vscodium.com
https://open-vsx.org/extension/humao/rest-client
https://open-vsx.org/extension/humao/rest-client
https://open-vsx.org/extension/alexcvzz/vscode-sqlite
https://open-vsx.org/extension/alexcvzz/vscode-sqlite
https://remix.ethereum.org/
https://trufflesuite.com/ganache
https://trilon.io/blog/nestjs-9-is-now-available
https://trilon.io/blog/nestjs-9-is-now-available
https://www.prisma.io
https://www.prisma.io

[18] Alex Ruheni. What’s new in Prisma? (Q2/22). https://www.prisma.io/blog/

wnip-q2-2022-pmn7rulcj8x#releases--new-features. (accessed: 18.06.2023).

[19] SQLite. SQLite Older News. https://www.sqlite.org/oldnews.html. (accessed:
18.06.2023).

[20] The React Team. React v18.0. https://react.dev/blog/2022/03/29/react-v18.
(accessed: 18.06.2023).

[21] Axios contributors. Release v1.0.0. https://github.com/axios/axios/releases/
tag/v1.0.0. (accessed: 18.06.2023).

[22] Marc Cosgaya Capel. Ethereum-NestJS-Middleware. https://github.com/

MarcCosgaya/Ethereum-NestJS-Middleware. (accessed: 18.06.2023).

[23] Marc Cosgaya Capel. Ethereum-NestJS-Frontend. https://github.com/

MarcCosgaya/Ethereum-NestJS-Frontend. (accessed: 18.06.2023).

[24] Notion Labs. Notion. https://www.notion.so/. (accessed: 22.06.2023).

[25] draw.io. https://www.drawio.com/. (accessed: 22.06.2023).

[26] John Fay Simon Knott. Prisma ERD. https://prisma-erd.simonknott.de. (ac-
cessed: 10.06.2023).

[27] OpenAPI Initiative. https://www.openapis.org/. (accessed: 22.06.2023).

[28] Ethers. HD Wallet. https://docs.ethers.org/v5/api/utils/hdnode. (accessed:
06.06.2023).

[29] bitcoin. bips. https://github.com/bitcoin/bips. (accessed: 06.06.2023).

[30] Etherscan. https://etherscan.io/. (accessed: 20.06.2023).

[31] Ethereum. solc. https://www.npmjs.com/package/solc. (accessed: 20.06.2023).

[32] Vultr. Cloud Compute. https://www.vultr.com/pricing/#cloud-compute/. (ac-
cessed: 28.06.2023).

[33] Kamatera. Cloud Servers. https://www.kamatera.com/Products/201/Cloud_

Servers#page_250. (accessed: 28.06.2023).

[34] RamNode. Cloud VPS Hosting Pricing. https://ramnode.com/pricing/. (ac-
cessed: 28.06.2023).

[35] Jest. Delightful JavaScript Testing. https://jestjs.io/. (accessed: 27.06.2023).

[36] Ethereum. Ethereum Testnets. https://ethereum.org/en/developers/docs/

networks/#ethereum-testnets. (accessed: 22.06.2023).

[37] Microsoft. Learn, connect, and explore. https://azure.microsoft.com/en-us/.
(accessed: 18.06.2023).

[38] Amazon. Start Building on AWS Today. https://aws.amazon.com/. (accessed:
18.06.2023).

27

https://www.prisma.io/blog/wnip-q2-2022-pmn7rulcj8x#releases--new-features
https://www.prisma.io/blog/wnip-q2-2022-pmn7rulcj8x#releases--new-features
https://www.sqlite.org/oldnews.html
https://react.dev/blog/2022/03/29/react-v18
https://github.com/axios/axios/releases/tag/v1.0.0
https://github.com/axios/axios/releases/tag/v1.0.0
https://github.com/MarcCosgaya/Ethereum-NestJS-Middleware
https://github.com/MarcCosgaya/Ethereum-NestJS-Middleware
https://github.com/MarcCosgaya/Ethereum-NestJS-Frontend
https://github.com/MarcCosgaya/Ethereum-NestJS-Frontend
https://www.notion.so/
https://www.drawio.com/
https://prisma-erd.simonknott.de
https://www.openapis.org/
https://docs.ethers.org/v5/api/utils/hdnode
https://github.com/bitcoin/bips
https://etherscan.io/
https://www.npmjs.com/package/solc
https://www.vultr.com/pricing/#cloud-compute/
https://www.kamatera.com/Products/201/Cloud_Servers#page_250
https://www.kamatera.com/Products/201/Cloud_Servers#page_250
https://ramnode.com/pricing/
https://jestjs.io/
https://ethereum.org/en/developers/docs/networks/#ethereum-testnets
https://ethereum.org/en/developers/docs/networks/#ethereum-testnets
https://azure.microsoft.com/en-us/
https://aws.amazon.com/

[39] Prisma. Database connectors. https://www.prisma.io/docs/concepts/

database-connectors. (accessed: 18.06.2023).

[40] CockroachDB. Build what you dream. https://www.cockroachlabs.com/

product/. (accessed: 18.06.2023).

[41] Ethereum. SMART CONTRACT LANGUAGES. https://ethereum.org/en/

developers/docs/smart-contracts/languages/. (accessed: 19.06.2023).

[42] Hardhat. Ethereum development environment for professionals. https://hardhat.
org/. (accessed: 18.06.2023).

[43] CoinMarketCap Alexandria. Metatransaction. https://coinmarketcap.com/

alexandria/glossary/metatransaction. (accessed: 19.06.2023).

28

https://www.prisma.io/docs/concepts/database-connectors
https://www.prisma.io/docs/concepts/database-connectors
https://www.cockroachlabs.com/product/
https://www.cockroachlabs.com/product/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://hardhat.org/
https://hardhat.org/
https://coinmarketcap.com/alexandria/glossary/metatransaction
https://coinmarketcap.com/alexandria/glossary/metatransaction

7 Appendices

7.1 Prisma schema file of the database

1 // This is your Prisma schema file ,

2 // learn more about it in the docs: https :// pris.ly/d/prisma -schema

3
4 generator client {

5 provider = "prisma -client -js"

6 }

7
8 datasource db {

9 provider = "sqlite"

10 url = env("DATABASE_URL")

11 }

12
13 model contract {

14 id Int @id @default(autoincrement ())

15 abi String

16 bytecode String

17 source String?

18 address String @unique

19 tx String @unique

20 verified Boolean

21 }

22
23 model transaction {

24 id Int @id @default(autoincrement ())

25 from String

26 to String

27 quantity Float

28 hash String @unique

29 blockHeight Int?

30 gasUsed BigInt?

31 gasPrice BigInt?

32 gasLimit BigInt

33 }

7.2 Definition, in YAML format, of the API following the Ope-
nAPI specification.

1 openapi: 3.0.0

2 paths:

3 /contracts /{id}/call/{func}:

4 get:

5 operationId: ContractsController_viewFunction

6 summary: Call view function in smart contract.

7 parameters:

8 - name: id

9 required: true

10 in: path

29

11 description: Contract id.

12 example: 3

13 schema:

14 type: number

15 - name: func

16 required: true

17 in: path

18 description: Function name in smart contract.

19 example: get

20 schema:

21 type: string

22 - name: args

23 required: true

24 in: query

25 description: List of arguments of the function.

26 example:

27 - a

28 - b

29 - c

30 schema:

31 type: array

32 items:

33 type: string

34 responses:

35 ’200’:

36 description: ’’

37 tags: &ref_0

38 - Contracts

39 /contracts /{id}/call:

40 post:

41 operationId: ContractsController_updateFunction

42 summary: Call update function in smart contract.

43 parameters:

44 - name: id

45 required: true

46 in: path

47 description: Contract id.

48 example: 3

49 schema:

50 type: number

51 requestBody:

52 required: true

53 content:

54 application/json:

55 schema:

56 $ref: ’#/ components/schemas/UpdateFunctionBodyDto ’

57 responses:

58 ’201’:

59 description: ’’

60 tags: *ref_0

61 /contracts:

62 post:

63 operationId: ContractsController_deploy

64 summary: Deploy a precompiled smart contract.

65 parameters: []

30

66 requestBody:

67 required: true

68 content:

69 application/json:

70 schema:

71 $ref: ’#/ components/schemas/DeployDto ’

72 responses:

73 ’201’:

74 description: ’’

75 tags: *ref_0

76 patch:

77 operationId: ContractsController_updateContract

78 summary: Verify and update contract in DB from already deployed

contract.

79 parameters: []

80 requestBody:

81 required: true

82 content:

83 application/json:

84 schema:

85 $ref: ’#/ components/schemas/UpdateContractDto ’

86 responses:

87 ’200’:

88 description: ’’

89 tags: *ref_0

90 get:

91 operationId: ContractsController_getAll

92 summary: Get list of all stored smart contracts.

93 parameters:

94 - name: pageSize

95 required: false

96 in: query

97 description: Number of elements per page.

98 example: 30

99 schema:

100 default: 10

101 type: number

102 - name: pageIndex

103 required: false

104 in: query

105 description: Index of the page.

106 example: 3

107 schema:

108 default: 0

109 type: number

110 responses:

111 ’200’:

112 description: ’’

113 tags: *ref_0

114 /contracts /{id}:

115 get:

116 operationId: ContractsController_getOne

117 summary: Get a single smart contract.

118 parameters:

119 - name: id

31

120 required: true

121 in: path

122 description: Contract id.

123 example: 3

124 schema:

125 type: number

126 responses:

127 ’200’:

128 description: ’’

129 tags: *ref_0

130 /transactions:

131 post:

132 operationId: TransactionsController_send

133 summary: Send Ethers to address.

134 parameters: []

135 requestBody:

136 required: true

137 content:

138 application/json:

139 schema:

140 $ref: ’#/ components/schemas/SendDto ’

141 responses:

142 ’201’:

143 description: ’’

144 tags: &ref_1

145 - Transactions

146 get:

147 operationId: TransactionsController_getAll

148 summary: Get list of all stored transactions.

149 parameters:

150 - name: pageSize

151 required: false

152 in: query

153 description: Number of elements per page.

154 example: 30

155 schema:

156 default: 10

157 type: number

158 - name: pageIndex

159 required: false

160 in: query

161 description: Index of the page.

162 example: 3

163 schema:

164 default: 0

165 type: number

166 responses:

167 ’200’:

168 description: ’’

169 tags: *ref_1

170 patch:

171 operationId: TransactionsController_updateTransaction

172 summary: Update transaction in DB from an already mined

transaction.

173 parameters: []

32

174 requestBody:

175 required: true

176 content:

177 application/json:

178 schema:

179 $ref: ’#/ components/schemas/UpdateTransactionDto ’

180 responses:

181 ’200’:

182 description: ’’

183 tags: *ref_1

184 /transactions /{ txHash }:

185 get:

186 operationId: TransactionsController_getOne

187 summary: Get a single transaction.

188 parameters:

189 - name: txHash

190 required: true

191 in: path

192 description: Hash of the transaction.

193 example: ’0

x9df7ba8ae253f458defb309e55c6f374c31c504f1e19f073a913ec8a87fa717d ’

194 schema:

195 type: string

196 responses:

197 ’200’:

198 description: ’’

199 tags: *ref_1

200 /transactions/balance /{addr}:

201 get:

202 operationId: TransactionsController_getBalance

203 summary: Get balance , in Ethers , of an address.

204 parameters:

205 - name: addr

206 required: true

207 in: path

208 description: Wallet address.

209 example: ’0xA46B8f9D99446AF2E0d536B4A89C17Cb62A6ad8A ’

210 schema:

211 type: string

212 responses:

213 ’200’:

214 description: ’’

215 tags: *ref_1

216 /transactions/sign:

217 post:

218 operationId: TransactionsController_sign

219 summary: Sign a transaction.

220 parameters: []

221 requestBody:

222 required: true

223 content:

224 application/json:

225 schema:

226 $ref: ’#/ components/schemas/SendNewDto ’

227 responses:

33

228 ’201’:

229 description: ’’

230 tags: *ref_1

231 info:

232 title: Ethereum -NestJS -Middleware

233 description: NestJS API for interacting with the Ethereum blockchain.

234 version: 0.0.3

235 contact: {}

236 tags: []

237 servers: []

238 components:

239 schemas:

240 MnemonicDto:

241 type: object

242 properties:

243 mnemonic:

244 type: string

245 description: Seed phrase.

246 example: >-

247 twin alley estate barrel bicycle crawl ocean better blanket

exotic

248 tone bid

249 password:

250 type: string

251 description: Password used to protect the HD Wallet.

252 example: p4ssw0rd

253 path:

254 type: string

255 description: HD path for the account.

256 example: m/44’/60’/0’/0/2

257 default: m/44’/60’/0’/0/0

258 required:

259 - mnemonic

260 GasSettingsDto:

261 type: object

262 properties:

263 gasLimit:

264 format: int64

265 type: integer

266 example: 21000

267 gasPrice:

268 format: int64

269 type: integer

270 example: 1122646121

271 maxFeePerGas:

272 format: int64

273 type: integer

274 maxPriorityFeePerGas:

275 format: int64

276 type: integer

277 required:

278 - gasLimit

279 - gasPrice

280 - maxFeePerGas

281 - maxPriorityFeePerGas

34

282 UpdateFunctionBodyDto:

283 type: object

284 properties:

285 mnemonic:

286 description: If provided , replaces internal private key.

287 allOf:

288 - $ref: ’#/ components/schemas/MnemonicDto ’

289 func:

290 type: string

291 description: Function name in smart contract.

292 example: get

293 args:

294 description: List of arguments of the function.

295 example:

296 - a

297 - b

298 - c

299 type: array

300 items:

301 type: string

302 gasSettings:

303 description: Gas settings for the transaction.

304 allOf:

305 - $ref: ’#/ components/schemas/GasSettingsDto ’

306 quant:

307 type: number

308 description: Send Ethers if payable.

309 example: 4.2

310 required:

311 - func

312 - args

313 DeployDto:

314 type: object

315 properties:

316 mnemonic:

317 description: If provided , replaces internal private key.

318 allOf:

319 - $ref: ’#/ components/schemas/MnemonicDto ’

320 abi:

321 type: string

322 description: JSON -formatted ABI of compiled smart contract.

323 example: >-

324 [{"constant":false ,"inputs":[],"name":"pay","outputs":[],"

payable":true ,"stateMutability":"payable","type":"function"},{"

constant":false ,"inputs":[],"name":"set","outputs":[],"payable":false

,"stateMutability":"nonpayable","type":"function"},{"constant":true ,"

inputs":[],"name":"get","outputs":[{"internalType":"uint256","name":"

","type":"uint256"}],"payable":false ,"stateMutability":"view","type":

"function"}]

325 bytecode:

326 type: string

327 description: Hex -formatted bytecode of compiled smart contract

.

328 example: >-

35

329 608060405234801561001057600080

fd5b5060c48061001f6000396000f3fe60806040526004361060305760003560e01c80631b9265b81460355780636d4ce63c14603d578063b8e010de146065575b600080fd5b603b6079565b005b348015604857600080fd5b50604f607b565b6040518082815260200191505060405180910390f35b348015607057600080fd5b5060776084565b005b565b60008054905090565b61014d60008190555056fea265627a7a72315820a59b715eb5b0778305021a2de3f2c5529462c2827e1cb9ec510d498b1b7de71f64736f6c634300050e0032

330 source:

331 type: string

332 description: Minified source code of the smart contract.

333 example: >-

334 pragma solidity ^0.5.0; contract SimpleStorage { uint x;

function

335 set() public { x = 333; } function get() public view returns

(uint)

336 { return x; } function pay() public payable {} }

337 fileName:

338 type: string

339 description: File name used to compile the contract.

340 example: contract -2 c390734c4.sol

341 compilerVersion:

342 type: string

343 description: Compiler version used to compile the contract.

344 example: 0.5.14

345 default: latest

346 gasSettings:

347 description: Gas settings for the transaction.

348 allOf:

349 - $ref: ’#/ components/schemas/GasSettingsDto ’

350 required:

351 - abi

352 - bytecode

353 UpdateContractDto:

354 type: object

355 properties:

356 tx:

357 type: string

358 description: Hash of the transaction that deployed the

contract.

359 example: ’0

x0ce48a5a0779e86dcdfd546098de79e2ba4e46bca478461f6c6f9a9565c55d93 ’

360 abi:

361 type: string

362 description: JSON -formatted ABI of compiled smart contract.

363 example: >-

364 [{"constant":false ,"inputs":[],"name":"pay","outputs":[],"

payable":true ,"stateMutability":"payable","type":"function"},{"

constant":false ,"inputs":[],"name":"set","outputs":[],"payable":false

,"stateMutability":"nonpayable","type":"function"},{"constant":true ,"

inputs":[],"name":"get","outputs":[{"internalType":"uint256","name":"

","type":"uint256"}],"payable":false ,"stateMutability":"view","type":

"function"}]

365 source:

366 type: string

367 description: Minified source code of the smart contract.

368 example: >-

369 pragma solidity ^0.5.0; contract SimpleStorage { uint x;

function

36

370 set() public { x = 333; } function get() public view returns

(uint)

371 { return x; } function pay() public payable {} }

372 fileName:

373 type: string

374 description: File name used to compile the contract.

375 example: contract -2 c390734c4.sol

376 compilerVersion:

377 type: string

378 description: Compiler version used to compile the contract.

379 example: 0.5.14

380 default: latest

381 required:

382 - tx

383 - abi

384 - source

385 - fileName

386 SendNewDto:

387 type: object

388 properties:

389 mnemonic:

390 description: If provided , replaces internal private key.

391 allOf:

392 - $ref: ’#/ components/schemas/MnemonicDto ’

393 to:

394 type: string

395 description: Address to send to.

396 example: ’0x1b973BC2cb3e4413a6B3E302357Fe9d1D586028e ’

397 quant:

398 type: number

399 description: Quantity (in Ethers).

400 example: 4.3

401 gasSettings:

402 description: Gas settings for the transaction.

403 allOf:

404 - $ref: ’#/ components/schemas/GasSettingsDto ’

405 required:

406 - to

407 - quant

408 SendRawDto:

409 type: object

410 properties:

411 tx:

412 type: string

413 description: Raw transaction in hex format.

414 example: >-

415 0

x02f87482053914843b9aca0084443bdd24825208941b973bc2cb3e4413a6b3e302357fe9d1d586028e883782dace9d90000080c001a02541d4e71162e152def63edb54e8c53a58cde7971af36f1382af8a7489060043a073e94bf43763a48c2e9bd4cb5597d378775c9f75d3d8f4b39ccf3aaaaeee17ab

416 required:

417 - tx

418 SendDto:

419 type: object

420 properties:

421 new:

37

422 description: Settings for a new transaction.

423 allOf:

424 - $ref: ’#/ components/schemas/SendNewDto ’

425 raw:

426 description: Settings for a raw transaction.

427 allOf:

428 - $ref: ’#/ components/schemas/SendRawDto ’

429 UpdateTransactionDto:

430 type: object

431 properties:

432 txHash:

433 type: string

434 description: Hash of the transaction.

435 example: ’0

xa83dc996c182595ee819868a83e0f5b39c3088f04051494dba9fa784f4430a01 ’

436 required:

437 - txHash

38

	List of Figures
	List of Tables
	Introduction
	Project development planning

	Background
	Blockchain
	Proof of Work
	Proof of Stake

	Ethereum
	Ethers
	Nest
	Architecture
	More information

	React

	Methodology
	Development
	Documentation

	Evaluation
	Endpoints
	Transactions
	Contracts

	Frontend
	Send
	Contract

	Budget
	Development
	Maintenance

	Conclusions and future development
	Future work
	Security
	Deployment
	Compilation
	Budget

	References
	Appendices
	Prisma schema file of the database
	Definition, in YAML format, of the API following the OpenAPI specification.

